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Abstract

We discuss a recent paper of Berry and Dennis (J. Phys. A: Math. Theor. 2008
41 135203) concerning a Laplace operator on a smooth domain with singular
boundary condition. We explain a paradox in the article (J. Phys. A: Math.
Theor. 2008 41 135203) and show that if a certain additional condition is
imposed, the result is a spectral problem for a self-adjoint operator having only
eigenvalues and no continuous spectrum. The eigenvalues accumulate at ±∞
only, and we obtain the asymptotic behaviours of the counting functions n+(λ)

and n−(λ) for positive and negative eigenvalues. The physical meaning of the
additional boundary condition is not yet clear.

PACS numbers: 02.30.Tb, 02.30.Jr, 03.65.Ge

1. Introduction

Recently Berry and Dennis [3] considered a spectral problem

−�u = λu (1)

for the Laplacian in a circular domain, with boundary conditions of the form

u + f (x)
∂u

∂ν
= 0.

Here ∂/∂ν denotes outward normal derivative. The smooth real function f has a finite
number of simple zeros and simple poles on the boundary. Writing ∂u/∂ν = (f (x))−1u, the
singularities at the zeros of f (called Dirichlet singularities in [3]) reflect themselves in the
properties of the spectrum of the problem.

A paradoxical result was obtained in [3]: it was found that the whole real line is filled
by the spectrum; moreover all numbers are eigenvalues, with corresponding eigenfunctions
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belonging to L2. This observation contradicts general theorems about the eigenfunctions of
self-adjoint operators (see, e.g. [12]): eigenfunctions of a self-adjoint operator, corresponding
to different eigenvalues, are orthogonal; thus, since the Hilbert space L2 is separable, there
can be no more than a countable set of eigenvalues, in no way the whole real line.

In the present paper, we try to explain the reason for this strange form of the spectrum
and propose a more adequate problem setting. A detailed explanation of the paradox in [3]
is given. We show that in the case of a special geometry the problem has only a discrete
spectrum with eigenvalues accumulating only at ±∞ and not at any finite point:

· · · < λ−2 < λ−1 < λ0 � λ1 � λ2 � · · · ;
λk → ±∞ as k → ±∞.

The techniques used are classical and require separation of variables and some knowledge
of the Titchmarsh–Weyl limit-point—limit-circle classification of singular Sturm–Liouville
problems for ODEs. The asymptotics of the counting function of the eigenvalues are found; in
particular, it turns out that the negative eigenvalues are placed more sparsely than the positive
ones.

We also give an outline of how the qualitative result can be proved for more general
geometries using a domain decomposition trick usually named after Glazman, who proposed
it for ordinary differential equations. We should mention, however, that a physical model
giving rise to the half-plane problem was already studied and analysed mathematically by
Exner and Šeba [5] in 1988.

2. Symmetric and self-adjoint operators

We recall here some facts about unbounded operators in a Hilbert space; for details see [12]
or other standard sources.

Let H be a Hilbert space with scalar product (·, ·) and let A0 be an unbounded linear
operator in H defined on the domain D0 = D(A0), dense in H. The operator is called
symmetric if (A0u, v) = (u,A0v) for all u, v ∈ D0. If T is any linear operator with dense
domain D(T ), the adjoint of T can be defined, see [12, vol 1, p 252]; the adjoint operator
is denoted by T ∗ and its domain by D(T ∗). The symmetric operator A0 is self-adjoint if
A∗

0 = A0. Any self-adjoint operator is symmetric but the converse is false. To prove that A0

is in fact self-adjoint one needs to check that the domain of A∗
0 coincides with the domain of

A0, and this task might not be that easy.
So, having a symmetric operator A0, one usually needs to choose a self-adjoint extension

of A0, i.e., a self-adjoint operator A such that D(A) ⊃ D0 and Au = A0u for u ∈ D0. Such
an extension, if exists, must, in turn, be a restriction of the operator A∗

0, so, D(A) ⊂ D(A∗
0)

and Au = A∗
0u for u ∈ D(A). In such cases the term self-adjoint realization is also used.

Why take trouble with this notion of self-adjointness? The reason is that only self-adjoint
realizations generate dynamics. If an operator A is only symmetric but not self-adjoint, thus
being defined on too small a set, the Schrödinger equation −i dψ

dt
= Aψ does not define a

unitary evolution group. An extensive discussion can be found, e.g., in [12, vol 2]. The same
happens in the opposite case, when the operator is defined on too large a domain, thus losing
symmetry. In both cases the study of the spectrum is useless: the spectrum covers the whole
complex plane.

For differential operators in a region in R
d , usually, the domain of the operator is

determined by the smoothness of functions inside the region (e.g., u ∈ H 2
loc for the Laplace

operator) and by boundary conditions (at the boundary of the region or at infinity). If one
imposes too many boundary conditions, say, simultaneously Dirichlet and Neumann ones for
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the Laplacian, the operator will be symmetric but not self-adjoint. If one imposes too few
boundary conditions or even no conditions at all, the operator ceases to be symmetric.

In regular situations, the correct amount of boundary conditions to impose is usually
clear. However in the presence of various kinds of singularities the question about the correct
statement of boundary conditions may become rather intricate. In the following section we
consider the Berry–Dennis model in more detail and resolve the question of self-adjointness.

3. Problem statement and solution: separable geometry

We consider the Laplacian in the semi-disc in R
2 described in plane polar coordinates by

�1 = {(r cos θ, r sin θ)|0 < r < 1,−π/2 < θ < π/2}.
Taking ε > 0, we equip the Laplacian in L2(�1) with the Dirichlet boundary conditions

u(x, y) = 0 if x2 + y2 = 1, (2)

on the semi-circular component

� = {(cos θ, sin θ)| − π/2 � θ � π/2}
of the boundary of �1, and with the Robin-type condition

u + εy
∂u

∂ν
= 0, for x = 0, −1 < y < 1, (3)

on the remainder of the boundary. In polar coordinates the boundary condition (3) becomes

u + ε
∂u

∂θ
= 0 for 0 < r < 1, θ = ±π/2. (4)

Let L denote the negative Laplacian equipped with the boundary conditions (2), (3): more
precisely, the domain of L is

D(L) = {u ∈ L2(�1)|�u ∈ L2(�1) and u satisfies (2, 3) in the weak sense} (5)

and

Lu = −�u := −uxx − uyy. (6)

Here all derivatives and boundary conditions should be understood in the usual weak sense.
Now consider the regular self-adjoint Sturm–Liouville problem

−�′′(θ) = λ�(θ), −π/2 < θ < π/2; (7)

�(−π/2) + ε�′(−π/2) = 0 = �(π/2) + ε�′(π/2). (8)

Let μn,�n, n = 0, 1, 2, . . . , denote the eigenvalues and eigenfunctions of this problem. A
simple calculation shows that

μ0 = −1

ε
; μn = n2, n = 1, 2, . . . , (9)

�n(θ) =
{

cos(nθ) − (nε)−1 sin(nθ) (n even);
cos(nθ) + nε sin(nθ) (n odd).

(10)

A standard calculation (separation of variables: writing u(x, y) = ∑
n Un(r)�n(θ)) now

shows that the operator L admits orthogonal decomposition into a direct sum of ordinary
differential operators:

L =
∞⊕

n=0

Ln, (11)

3
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where

D(Ln) =
{
U ∈ L2

r (0, 1)

∣∣∣∣ − 1

r

d

dr

(
r

dU

dr

)
+ μnr

−2U ∈ L2
r (0, 1);U(1) = 0

}
, (12)

LnU = −1

r

d

dr

(
r

dU

dr

)
+ μnr

−2U. (13)

Here L2
r (0, 1) denotes the space of functions U which satisfy the weighted square integrability

condition ∫ 1

0
r|U(r)|2 dr < +∞. (14)

The operators Ln for n � 1 differ from the operator L0 in one important respect: L0 is not
self-adjoint, but the Ln for n � 1 are all self-adjoint, for reasons which we now explain.

The singularity at the origin for the eigenvalue problems

−1

r

d

dr

(
r

dU

dr

)
+

n2

r2
U = λU, (15)

U(1) = 0 (16)

is of the so-called limit-point type (see Reed and Simon [12, vol 2, p 152], Coddington and
Levinson [4, chapter 9]): in other words, for each λ the differential equation

−1

r

d

dr

(
r

dU

dr

)
+

n2

r2
U = λU

has at most a one-dimensional space of solutions satisfying the square integrability condition
(14). In fact, for each n, the space of square integrable solutions has dimension precisely
1 and is spanned by the Bessel function Jn(r

√
λ). All other solutions have the form

AJn(r
√

λ) + BYn(r
√

λ), where B 
= 0, and are therefore not square integrable.
The square integrability condition can be regarded as acting like a second-boundary

condition, replacing the condition which one would ordinarily impose at r = 0 if this were
a regular endpoint. It can be shown [4, chapter 9, problem 13] that, subject to square
integrability, the Ln do not require a further boundary condition at the singular point. The
square integrability condition selects U(r) = const Jn(r

√
λ) as the only admissible solution

and the remaining boundary condition U(1) = 0 then restricts
√

λ to be a zero of Jn. The
eigenfunctions of each Ln thus have the form

Rn,k(r) = Jn(rjn,k), (17)

where jn,k denotes the kth zero of the Bessel function Jn, and the corresponding eigenvalues
are λn,k = j 2

n,k .
The operator L0, by contrast, is of the so-called limit-circle type [12, p 151], [4, chapter

9]: in other words, for each λ, all solutions of the differential equation

L0U = −1

r

d

dr

(
r

dU

dr

)
− 1

ε2r2
U = λU (18)

satisfy the square integrability condition (14), just as if r = 0 were a regular endpoint. Given
any λ ∈ C, the function

U(r) = Ji/ε(r
√

λ)Yi/ε(
√

λ) − Yi/ε(r
√

λ)Ji/ε(
√

λ)

is a nontrivial solution of the differential equation which satisfies the boundary condition
U(1) = 0 together with the square integrability condition (14): thus, any complex number

4
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λ is an eigenvalue of L0. Since a self-adjoint operator cannot have non-real eigenvalues, L0

cannot be self-adjoint. In the terminology of Reed and Simon [12], the problem is not quantum
mechanically complete.

The same argument can be made for any second-order Sturm–Liouville equation which
has a two-dimensional space of square integrable solutions. To obtain a self-adjoint operator
a single boundary condition U(1) = 0 is insufficient, just as in the case of a Sturm–Liouville
equation with two regular endpoints: the domain of L0 must be restricted by imposing an
additional boundary condition at r = 0. If we fail to impose such an extra condition we get
an operator which is not symmetric.

The procedure for setting such conditions is described in a number of sources: see, e.g.
[4, p 246]. Observe that for λ = 0 equation (18) has the solutions

u0(r) = sin(ε−1 log(r)), v0(r) = cos(ε−1 log(r)). (19)

Admissible self-adjoint boundary conditions have the form

A[U, u0](0) + B[U, v0](0) = 0, (20)

where (A,B) is a nontrivial pair of real constants, and [f, g](0) denotes the Wronskian limit

[f, g](0) = lim
r↘0

r(f (r)g′(r) − f ′(r)g(r)). (21)

(Remark: the function Au0 + Bv0 is the function denoted by χ̂∞ in [4, p 246]; the particular
formulation (20) appears in [11].)

From now on, for definiteness, we shall restrict L0 by imposing the boundary condition

[U, u0](0) = 0. (22)

This condition may be regarded approximately as requiring that U either oscillate ‘in phase’
with u0 near r = 0 or else tend to zero so rapidly that the phase difference between U and u0

becomes irrelevant. We shall denote the resulting restriction of L0 by L′
0; its domain is

D(L′
0) = {U ∈ D(L0)|[U, u0](0) = 0}

=
{
U ∈ L2

r (0, 1)

∣∣∣∣1

r

d

dr

(
r

dU

dr

)
+

U

ε2r2
∈ L2

r (0, 1);U(1) = 0 = [U, u0](0)

}
.

It is now an easy matter to check that λ = 0 is an eigenvalue of L′
0 with eigenfunction u0.

In order to describe the rest of the spectrum of L′
0 we make one further observation. The

equation (18) has the additional property that for every real λ, all solutions have infinitely
many zeros in a neighbourhood of the origin, as may easily be verified using a Frobenius
ansatz U(r) ∼ (r±i/ε) or U(r) ∼ �(r±i/ε). Singular Sturm–Liouville problems for which
every real solution of the equation is square integrable and has infinitely many zeros are called
limit circle oscillatory. Such problems have the property that, no matter what self-adjoint
boundary conditions may be imposed, the spectrum consists of eigenvalues tending to −∞
and to +∞, with no finite accumulation points. Proofs of these results may be found in, e.g.,
Weidmann [14, theorem 7.11; theorem 14.3; corollary 14.5a]; a review of theoretical results
on their spectra (without proofs) together with software for their numerical solution may be
found in [2].

It follows that the spectrum of L′
0 consists of eigenvalues only and that these accumulate

at ±∞ and at no finite point,

· · · < λ0,−2 < λ0,−1 < 0 < λ0,1 < λ0,2 < · · · . (23)

A self-adjoint realization of our original Laplace operator L is thus given by

L′ = L′
0

∞⊕
n=1

Ln; (24)

5
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its spectrum is

σ(L′) = σ(L′
0)

∞⋃
n=1

σ(Ln). (25)

Thus the spectrum of the self-adjoint Laplace operator L′ is purely discrete and consists of
eigenvalues accumulating at ±∞ and at no finite point. There is no continuous spectrum.

The particular choice of the self-adjoint realization of the operator L′
0 does not affect the

above conclusion. It is known that for ordinary differential operators of limit-circle type the
qualitative properties of the spectrum are the same for all realizations.

As a final remark, we observe that the boundary condition (22) on elements u of the
domain of L′

0 may also be written as∫ 1

0
u0(r)[−r−1(rU ′)′ − ε−2r−2U ]r dr = 0. (26)

This translates into a boundary condition on elements of the operator L′,∫
�1

u0�u dx dy = 0 (27)

which elements of D(L′) must satisfy, in addition to (2), (3).

4. Eigenvalue asymptotics

The qualitative study of the spectrum presented above can be complemented by a quantitative
description. For a self-adjoint operator L and λ > 0, we denote by n±(λ, L) the number of
eigenvalues of ±L in the interval (0, λ). It is known that for a majority of naturally stated
problems the distribution functions n±(λ, L) have power asymptotics in λ as λ → ∞; there
is a huge literature on the topic and a (far from being complete) review of results in this field
can be found in [13]. We will see that the asymptotics of n±(λ) for our problem are different
for λ → +∞ and for λ → −∞: in a certain sense there are considerably fewer negative
eigenvalues than positive ones.

The reasoning given below is based upon classical facts about the asymptotic behaviour
of solutions of Sturm–Liouville equations that can be found, say, in [9, chapter 11], partly
because this makes the analysis more general than an argument based on the explicit use of
Bessel functions, and partly because the authors find this approach more accessible. We omit
the tedious calculations as well as the justification of the asymptotic formulae, which are
standard.

We represent our operator L′ as a direct sum

L′ = L′
0 ⊕ L̃, L̃ =

∞⊕
n=1

Ln. (28)

The spectrum of L′ is thus the union of the spectra of L′
0 and L̃. We consider L̃ first. The

eigenvalues of L̃ due to (18), are given by

λn,k = j2n,k, (29)

the zeros of the Bessel functions J2n(r), n = 1, 2, . . .. Note that these eigenvalues do not
depend on the parameter ε in (3), in particular, we can set ε = 0. In this case the boundary
condition (3) takes the form u = 0 for r ∈ (0, 1). Together with (2), this means that the
eigenvalues of the operator L̃ are the same as the eigenvalues of the Laplacian in �1 with

6
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Dirichlet boundary conditions on the whole of the boundary of �1. The eigenvalue asymptotics
for this problem is well known, thus we have

n+(λ, L̃) ∼ π2

4
λ, λ → +∞. (30)

Of course, there are no negative eigenvalues for L̃, therefore n−(λ, L̃) = 0.

Now we consider the spectrum of the operator L′
0 in (19). By the change v(t) = t−

1
2 u(t),

equation (19) transforms to

−vrr −
(

1

4
+

1

ε2

)
r−2v = λv, (31)

on the interval (0, 1) with the boundary conditions

v(1) = 0, v(r) = a0 sin(ε−1 log r) + o(1), r → 0, (32)

the latter stemming from (23).
To study the eigenvalue asymptotics for the problem (31) we make a change of variables

t = κr,w(t) = v(κr), with κ = |λ| 1
2 . This change transforms our eigenvalue problem to

−wtt +

(
1

4
+

1

ε2

)
t−2w = σw, σ = λ

|λ| , (33)

with boundary conditions (normalized by setting a0 = 1)

w(κ) = 0,

w(t) = cos(ε−1 log κ) sin(ε−1 log t) + sin(ε−1 log κ) cos(ε−1 log t) + o(1), t → 0.
(34)

Thus the eigenvalues of the boundary problem (31) and (32) have the form σκ2, where κ

is a positive zero of the function w(t) that satisfies (33) with appropriate σ = ±1 and with the
boundary condition as in (34) at t = 0.

We denote by wc(t), ws(t) the solutions of equation (33), having as t → 0 asymptotics
wc(t) ∼ cos(ε−1 log t), resp., ws(t) ∼ sin(ε−1 log t). So, our eigenfunction w(t) must have
the form

w(t) = cos(ε−1 log κ)ws(t) + sin(ε−1 log κ)wc(t). (35)

Consider the case of σ = 1 first. Then equation (33) is oscillatory at infinity and therefore
the solutions wsc(t) have for t → ∞ asymptotics

ws(t) ∼ A1 sin t + B1 cos t; wc(t) = A2 sin t + B2 cos t, t → ∞, (36)

with some real coefficients Aj , Bj . Therefore, large zeros of the function w(t) are
asymptotically described by the equation

w(κ) = cos(ε−1 log κ)(A1 sin κ + B1 cos κ) + sin(ε−1 log κ)(A2 sin κ + B2 cos κ) = 0. (37)

To study the behaviour of the roots of equation (37), we represent it in the form

tan(ε−1 log κ) = −A1 sin κ + B1 cos κ

A2 sin κ + B2 cos κ
. (38)

Just by the observation of the graphs of the functions in (38), one can see that on each period
πn, π(n + 1) of the function on the right-hand side, there are only finitely many, uniformly in
n, roots of equation (38). Thus, the counting function n+(λ) of positive eigenvalues κ2 of our
problem below λ is estimated as n+(λ, L′

0) = O
(
λ

1
2
)
.

Now consider the negative eigenvalues, i.e., σ = −1. The equation (33) is non-oscillatory
at infinity and therefore the solutions wsc(t) have at infinity the asymptotics

ws(t) = A exp(t)(1 + o(1)), wc(t) = B exp(t)(1 + o(1)), t → ∞. (39)

7
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Therefore, to determine the asymptotics of the zeros of the function w(t), we must consider
the equation

A cos(ε−1 log κ) + B sin(ε−1 log κ) = 0. (40)

Equation (40) can be written in the form sin(θ0 + ε−1 log κ) = 0 where sin(θ0) = A√
A2+B2

, thus
the zeros of w(t) are described by

κn ∼ C exp

(
πn

ε

)
,

and therefore for the distribution function n−(λ), λ > 0, the number of negative eigenvalues
above −λ, we have the asymptotics

n−(λ, L′
0) ∼ ε−1 log λ

2π
. (41)

Taking into account (30) and (28), we arrive at the following conclusions. In the
asymptotics of the positive eigenvalues, the contribution of L′

0 is absorbed by that of L̃.
So, up to lower order terms, asymptotically the positive spectrum of L′ does not reflect the
singularity in the boundary condition. On the other hand, the asymptotics of the negative
eigenvalues of L′ is determined by the boundary conditiononly. These eigenvalues are located
extremely, and their density decreases as the parameter ε tends to zero.

Note, finally, that the asymptotics found above does not depend on the choice of the
additional boundary condition at the singular point (the D-point) in the original problem: in
other words, they do not depend on the choice of self-adjoint realization of L0.

5. Other domains

Domains of different shape from that considered here, or with several zeros of f on the
boundary, can be treated by repeated application of the Glazman decomposition trick (see [6]),
which we now describe.

Let �2 be another bounded regular domain, disjoint from �1, with piecewise smooth
boundary and no non-convex corners and whose boundary intersects the boundary of �1

precisely on the semi-circular arc:

�1 ∩ �2 = ∅, ∂�1 ∩ ∂�2 = {(cos θ, sin θ)| − π/2 � θ � π/2}. (42)

Let � := �1 ∪ �2 and assume that ∂� has no non-convex corners. We consider in L2(�)

a Laplace operator T defined by removing the boundary condition u = 0 on the semicircular
arc (which is not part of the boundary of �1 ∪ �2) and imposing instead a regular self-
adjoint boundary condition on ∂�\∂�1. For simplicity of exposition we consider a Dirichlet
condition:

u = 0 on ∂�\∂�1. (43)

Once again, all boundary conditions should be understood in the weak sense. The domain of
T will be

D(T ) = {u ∈ L2(�)|�u ∈ L2(�), u satisfies (3), (27), (43)}. (44)

We now compute the resolvent operator (T − zI)−1 for non-real z: by showing that this is
compact, we shall establish that T also has only discrete spectrum.

Let K1(z) and K2(z) be Poisson operators for the domains �1 and �2, respectively: this
means that if h ∈ Hs(�) for some s ∈ R then the functions

v1 = K1(z)h, v2 = K2(z)h

8
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solve, in the appropriate weak sense [1], the following boundary value problems:

−�v1 − zv1 = 0 in �1,

v1 satisfies (3), (27),
v1|� = h;

⎫⎬
⎭ (45)

−�v2 − zv2 = 0 in �2,

v2 = 0 satisfies (43),
v2|� = h.

⎫⎬
⎭ . (46)

These operators are well defined for all non-real z. Let �2 denote the usual Dirichlet Laplace
operator in L2(�2):

D(�2) = H 2(�2) ∩ H 1
0 (�2). (47)

Suppose that u ∈ D(T ) and (T − zI)u = f ∈ L2(�). Let f1 = f |�1 , f2 = f |�2 , u1 = u|�1

and u2 = u|�2 . Taking h = u|� we can decompose

u1 = K1(z)h + w1, u2 = K2(z)h + w2,

where w1 ∈ D(L′), w2 ∈ D(�2), and

(L′ − zI)w1 = f1, (�2 − zI)w2 = f2.

Thus w1 = (L′ − zI)−1f1 and w2 = (�2 − zI)−1f2, giving

u1 = K1(z)h + (L′ − zI)−1f1, u2 = K2(z)h + (�2 − zI)−1f2. (48)

The function h is eliminated by insisting that the normal derivatives of u1 and u2 match
across �:

∂1u1 + ∂2u2 = 0, (49)

where ∂j denotes the outward normal derivative on � from �j, j = 1, 2. Recall also that
the normal derivatives of K1(z)h and K2(z)h are given by the Dirichlet to Neumann maps
associated with L′ and �2, respectively:

∂1K1(z)h = �1(z)h, ∂2K2(z)h = �2(z)h. (50)

Combining (48), (49) and (50) to eliminate h results in the expression(
u1

u2

)
= R(z)

(
f1

f2

)
,

where R(z) is the block operator matrix representation of (T − zI)−1 given by(
[I−K1(z)(�1(z) + �2(z))

−1∂1](L′ − zI)−1 −K1(z)(�1(z)+�2(z))
−1∂2(�2 − zI)−1

−K2(z)(�1(z) + �2(z))
−1∂1(L

′ − zI)−1 [I−K2(z)(�1(z)+�2(z))
−1∂2](�2−zI)−1

)
.

(51)

We have already shown that L′ has eigenvalues accumulating only at infinity and no essential
spectrum. This means that (L′ − zI)−1 is compact (and self-adjoint, if z is real and not one
of the eigenvalues of L′). The resolvent of the classical Dirichlet Laplacian �2 is also well
known to be compact [12, vol IV] since it has only eigenvalues accumulating only at infinity,
and no essential spectrum. To show that R(z) is a compact operator it is therefore sufficient
to know that the following operators are all bounded in the appropriate L2 spaces:

K1(z); K2(z); (�1(z) + �2(z))
−1∂1; (�1(z) + �2(z))

−1∂2. (52)
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The first two operators here are Poisson operators and are known to be bounded from Hs(�)

to L2(�1) and L2(�2) respectively, for any s � −1/2—see [8, chapter 3].
For the remaining two operators we note that �1(z) + �2(z) is a pseudodifferential

operator of order 1 on the scale of Sobolev spaces Hs(�) (see, e.g. [7, 10]) and that it fails to
be invertible precisely when it has a non-trivial kernel. When this happens, we can take h to
be an element of this kernel and deduce that the function w given by

w|�1 = K1(z)h, w|�2 = K2(z)h

is an eigenfunction of T with eigenvalue z. Since T is self-adjoint and �(z) 
= 0 this is
impossible. The inverse (�1(z) + �2(z))

−1 therefore exists; it is a pseudodifferential operator
of order −1 on the scale of Sobolev spaces Hs(�). Since ∂1 and ∂2 are pseudodifferential
operators of order 1, the operators

(�1(z) + �2(z))
−1∂1; (�1(z) + �2(z))

−1∂2

are bounded on the scale of Sobolev spaces Hs(�).
Thus R(z) is compact, so (T −zI)−1 is compact, and our T has a purely discrete spectrum

accumulating at ±∞, just like L′.

6. Discussion

Now we can return to the unusual result obtained in [3]. In the study of the spectrum, the
authors did not consider the self-adjointness question. As a result they did not put the extra
boundary condition at the singular point, a condition necessary for self-adjointness. So, the
eigenvalue problem was being solved for an operator which was not only non-self-adjoint, but
even nonsymmetric. As a result each real number turned out to be an eigenvalue (in fact, each
complex number turns out to be an eigenvalue as well). Since each eigenfunction found in [3]
satisfies some boundary conditions of the type (20), such an eigenfunction is an eigenfunction
of some self-adjoint realization of the operator. So, the ‘spectrum’ found in [3] is just the
union of the spectra of all possible self-adjoint realizations of the operator, and therefore there
is nothing strange now that it covers the whole real line. It remains unclear what is the physical
meaning of the particular choice of self-adjoint realization in such singular situations.
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